

Panagiotis REPOUSKOS

Convex Optimization and Random Walks

Convex Optimizati Random Walks

Randomized Cutting Plane

Algorithm

Simulated Annealing

Future Work

References

Sampling Methods for Convex Optimization

Panagiotis REPOUSKOS

Department of Informatics and Telecommunications, UoA

Joined work with:

A. Chalkis, I. Emiris, V. Fisikopoulos, G. Karagiorgos, E. Tsigaridas

Supported by Google Summer of Code 2019

August 22, 2019

Outline

Convex Optimization Panagiotis REPOUSKOS

Randomized

Convex Optimization and Random Walks

Random Walks

Randomized Cutting Plane

Algorithm Experiment

Annealing

Future Work

- 1 Convex Optimization and Random Walks
 - Convex Optimization
 - Random Walks
- 2 Randomized Cutting Plane
 - Algorithm
 - Experiments
- 3 Simulated Annealing
 - Algorithm
- 4 Future Work

Panagiotis REPOUSKOS

Convex Optimization and Random Walks

Convex Optimization Random Walks

Randomized Cutting Plane

Algorithm

Experiments

Annealing

References

Section 1

Convex Optimization and Random Walks

Panagiotis REPOUSKOS

Convex Optimization and Random Walks

Convex Optimization Random Walks

Randomized Cutting Plane

Algorithm

Simulated Annealing

Future Work

References

Linear Programming

Minimize $c^{\top}x$ subject to $Ax \le b$ $x \ge 0$

Semidefinite Programming

 $\begin{array}{ll} \text{Minimize} & C \cdot X \\ \text{subject to} & A_i \cdot X \leq b_i \\ & X \succeq 0 \end{array}$

$${}^{1}C \cdot X := \sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij}X_{ij}$$

²The images were taken from Wikipedia

Geometric Random Walks

Randomized Convex Optimization

Panagiotis REPOUSKOS

Optimization and Random Walks

Convex Optimization
Random Walks

Randomized Cutting Plane

Algorithm

Simulated Annealing

Future Work

Panagiotis REPOUSKOS

Convex Optimization and Random Walks

Convex Optimization

Randomized Cutting Plane

Algorithm

Simulated Annealing

Future Work

References

■ We will use sampling to solve convex programs

Geometric Random Walks

Randomized Convex Optimization Panagiotis

REPOUSKOS Convex Optimization

and Randon Walks

Random Walks
Randomized

Cutting Plane

Experiment

Annealing

Future Work

- We will use sampling to solve convex programs
- We need to sample a convex body under some distribution

Geometric Random Walks

Randomized Convex Optimization Panagiotis

REPOUSKOS Convex Optimization

and Random Walks

Random Walks

Randomized Cutting Plane

Algorithm Experiment

Annealing

Future Work

- We will use sampling to solve convex programs
- We need to sample a convex body under some distribution
- Use a geometric random walk

Panagiotis REPOUSKOS

Convex Optimization

Walks
Convex Optimiz
Random Walks

Randomized Cutting Plane

Algorithm Experiments

Annealing

Future Work

- We will use sampling to solve convex programs
- We need to sample a convex body under some distribution
- Use a geometric random walk
- A geometric random walk is a Markov Chain

Randomized Convex Optimization Panagiotis

REPOUSKOS

Convex Optimization

Convex Optimiz

Randomized Cutting Plane

Algorithm

Annealin

Future Work

- We will use sampling to solve convex programs
- We need to sample a convex body under some distribution
- Use a geometric random walk
- A geometric random walk is a Markov Chain
- We also need a boundary oracle

Randomized Convex Optimization

Panagiotis REPOUSKOS

Convex Optimization and Random Walks

Random Walks

Randomized Cutting Plane

Algorithm

Simulat

Annealing Algorithm

Future Work

References

■ Decide a distance *H* and repeat *k* times

Randomized Convex Optimization

Panagiotis REPOUSKOS

Convex Optimization and Random Walks

Random Walks

Randomized Cutting Plane

Algorithm

Annealing Algorithm

Future Work

- Decide a distance *H* and repeat *k* times
 - Choose a direction and start moving

Randomized Convex Optimization

Panagiotis REPOUSKOS

Convex Optimization and Random Walks

Convex Optimizat Random Walks

Randomized Cutting Plane

Algorithn

Annealin

Future Work

- Decide a distance *H* and repeat *k* times
 - Choose a direction and start moving
 - If reached the boundary before traveling *H* long, the trajectory is reflected

Randomized Convex Optimization Panagiotis

REPOUSKOS

Convex
Ontimization

Convex Optimizati

Randomized Cutting Plane

Algorithm

Simulate

Algorithm

Future Work

- Decide a distance *H* and repeat *k* times
 - Choose a direction and start moving
 - If reached the boundary before traveling *H* long, the trajectory is reflected

Randomized Convex Optimization

Panagiotis REPOUSKOS

Convex Optimization and Random Walks

Random Walks

Randomized Cutting Plane

Algorithm

Annealin

Future Work

- \blacksquare Decide a distance H and repeat k times
 - Choose a direction and start moving
 - If reached the boundary before traveling *H* long, the trajectory is reflected

Randomized Convex Optimization Panagiotis

REPOUSKOS

Convex
Optimization

Convex Optimizati

Randomized Cutting Plane

Algorithm

Annealin

Future Work

- Decide a distance *H* and repeat *k* times
 - Choose a direction and start moving
 - If reached the boundary before traveling *H* long, the trajectory is reflected

Panagiotis REPOUSKOS

Optimization and Random Walks

Convex Optimizatio Random Walks

Randomized Cutting Plane

Algorithm

Experiment

Annealing

Future Wor

References

Section 2

Randomized Cutting Plane

An Algorithm for Approximation

Algorithm

Randomized Convex Optimization

Panagiotis REPOUSKOS

Convex Optimization and Random Walks

Convex Optimization Random Walks

Randomized

Cutting Plane Algorithm

Experiments

Annealing

Future Work

References

■ Input: convex body *K*, objective function *c*

Algorithm

Randomized Convex Optimization

Panagiotis REPOUSKOS

Convex Optimization and Random Walks

Convex Optimization Random Walks

Randomized Cutting Plane

Algorithm

Experiments

Annealing

Future Work

- Input: convex body *K*, objective function *c*
- Sample *N* points under the uniform distribution

Randomized Convex Optimization Panagiotis REPOUSKOS

Convex Optimization and Random Walks

Convex Optimizati Random Walks

Randomized Cutting Plane

Algorithm

Experiment

Annealing Algorithm

Future Work

- Input: convex body *K*, objective function *c*
- Sample *N* points under the uniform distribution
- Find the point *x* minimizing the objective function

Panagiotis REPOUSKOS

Convex Optimization and Random Walks

Convex Optimizati Random Walks

Randomized Cutting Plane

Algorithm

Simulate Annealin

Future Work

- Input: convex body *K*, objective function *c*
- Sample *N* points under the uniform distribution
- Find the point *x* minimizing the objective function
- Cut the convex body at *x*

Panagiotis REPOUSKOS

Convex Optimization and Random Walks

Random Walks

Randomized Cutting Plane

Algorithm

Simulate

Annealin,

Future Work

- Input: convex body *K*, objective function *c*
- Sample *N* points under the uniform distribution
- Find the point *x* minimizing the objective function
- Cut the convex body at *x*
- Repeat

Panagiotis REPOUSKOS

Convex Optimization and Random Walks

Random Walks

Randomized Cutting Plane

Algorithm

Simulate Annealin

Future Worl

- Input: convex body *K*, objective function *c*
- Sample *N* points under the uniform distribution
- Find the point *x* minimizing the objective function
- Cut the convex body at *x*
- Repeat

Panagiotis REPOUSKOS

Convex Optimization and Random Walks

Random Walks

Randomized Cutting Plane

Algorithm

Simulate

Algorithm

Future Work

- Input: convex body *K*, objective function *c*
- Sample *N* points under the uniform distribution
- Find the point *x* minimizing the objective function
- Cut the convex body at *x*
- Repeat

Panagiotis REPOUSKOS

Convex Optimization and Random Walks

Random Walks

Randomized Cutting Plane

Algorithm

Simulate

Annealing Algorithm

Future Work

- Input: convex body *K*, objective function *c*
- Sample *N* points under the uniform distribution
- Find the point *x* minimizing the objective function
- Cut the convex body at *x*
- Repeat

Panagiotis REPOUSKOS

Randomized Cutting Plane

Algorithm

- Input: convex body K, objective function c
- Sample *N* points under the uniform distribution
- Find the point x minimizing the objective function
- Cut the convex body at x
- Repeat

Panagiotis REPOUSKOS

Randomized Cutting Plane

Algorithm

- Input: convex body K, objective function c
- Sample *N* points under the uniform distribution
- Find the point x minimizing the objective function
- Cut the convex body at x
- Repeat

Randomized Convex Optimization Panagiotis

REPOUSKOS Convex Optimization

Walks
Convex Optimization

Randomized

Cutting Plane Algorithm

Simulated Annealing

Algorithm

Future Work

References

Expected Convergence [Dabbene, Shcherbakov, and Polyak]

The expected number of steps k, to get a solution x_k s.t. $x_k - x^* \le \alpha$ is at most:

$$k = \lceil \frac{1}{\ln(N+1)} n \ln R/\alpha \rceil$$

where R is the diameter of the convex body in \mathbb{R}^n and N = # samples.

Results for Polytopes

Randomized Convex Optimization

Panagiotis REPOUSKOS

Convex Optimizatio and Randon Walks

Random Walks

Randomized Cutting Plane

Experiments

Annealing Algorithm

Future Work

References

Our implementation using CDH&R¹ and Billiard Walk.

¹Hit and Run with coordinate directions

²The polytopes tested are in n dimensions and have 4n facets.

Panagiotis REPOUSKOS

Convex Optimizatio and Randon Walks

Random Walks

Randomized Cutting Plane

Experiments

Annealing
Algorithm

Future Work

References

Our implementation using CDH&R¹ and Billiard Walk.

■ Different random walks offer different benefits.

¹Hit and Run with coordinate directions

 $^{^{2}}$ The polytopes tested are in n dimensions and have 4n facets.

Results for Polytopes

Randomized Convex Optimization

Panagiotis REPOUSKOS

Convex Optimizatio and Randon Walks

Random Walks

Randomized Cutting Plane

Experiments

Simulated Annealing Algorithm

Future Work

References

Our implementation using CDH&R¹ and Billiard Walk.

- Different random walks offer different benefits.
- Billiard offers precision, CDH&R offers speed.

 $^{^{1}\}mathrm{Hit}$ and Run with coordinate directions

 $^{^{2}}$ The polytopes tested are in $\it n$ dimensions and have $4\it n$ facets.

Randomized Convex Optimization Panagiotis

REPOUSKOS Convex

Optimization and Random Walks

Random Walks

Randomized Cutting Plane

Algorit

Experiments

Annealing

Future Work

References

■ The boundary oracle for polytopes entails linear equations.

Linear Programming

Minimize
$$c^{\top}x$$

subject to $Ax \le b$
 $x > 0$

Randomized Convex Optimization Panagiotis REPOUSKOS

Convex Optimization and Random Walks

Convex Optimizati Random Walks

Randomized Cutting Plane

Experiments

Simulate

Annealin

Future Work

References

 The boundary oracle for polytopes entails linear equations.

 The boundary oracle for spectrahedra entails eigenvalues (equivalently polynomial equations).

Linear Programming

$$\begin{array}{ll} \text{Minimize} & c^{\top}x \\ \text{subject to} & Ax \leq b \\ & x > 0 \end{array}$$

Semidefinite Programming

$$\begin{array}{ll} \text{Minimize} & C \cdot X \\ \text{subject to} & A_i \cdot X \leq b_i \\ & X \succeq 0 \end{array}$$

Panagiotis REPOUSKOS

Convex Optimization and Random Walks

Convex Optimization

Randomized Cutting Plane

Experiments

Simulated Annealing

Future Work

References

Using RDH& \mathbb{R}^1 with / without implicit isotropization.

¹Hit and Run with random directions

 $^{^{2}\}mathsf{The}$ matrices in the experiments are of dimension 50

Panagiotis REPOUSKOS

Convex Optimization and Random Walks

Convex Optimization

Randomized Cutting Plane

Algorith

Experiments

Annealing Algorithm

Future Work

References

Using RDH&R 1 with / without implicit isotropization.

■ This random walk doesn't scale well with dimensions

¹Hit and Run with random directions

 $^{^{2}\}mathsf{The}$ matrices in the experiments are of dimension 50

Panagiotis REPOUSKOS

Convex Optimization and Random Walks

Convex Optimization

Randomized Cutting Plane

Algorith

Experiments

Annealing

Future Work

References

Using RDH& \mathbb{R}^1 with / without implicit isotropization.

- This random walk doesn't scale well with dimensions
- We need better sampling for spectrahedra

¹Hit and Run with random directions

 $^{^{2}}$ The matrices in the experiments are of dimension 50

Randomized Convex Optimization

Panagiotis REPOUSKOS

Optimization and Random Walks

Convex Optimization Random Walks

Randomized Cutting Plane

Algorithm

Experimen

Simulated Annealing

_ ...

References

Section 3

Simulated Annealing

Beyond Uniform Distribution

Randomized Convex Optimization

Panagiotis REPOUSKOS

Optimization and Random Walks

Convex Optimizatio Random Walks

Randomized Cutting Plane

Algorithm

Annealing Algorithm

Future Work

■ For
$$i = 1, 2, ..., I$$

Convex Optimization Panagiotis REPOUSKOS

Randomized

Convex Optimization and Random Walks

Convex Optimization

Randomized Cutting Plane

Algorithm

Simulat

Annealing Algorithm

Future Work

■ For
$$i = 1, 2, ..., I$$

■ set temperature
$$T_i = R\left(1 - \frac{1}{\sqrt{n}}\right)^i$$

Convex Optimization Panagiotis REPOUSKOS

Randomized

Convex Optimization and Random Walks

Convex Optimization

Randomized Cutting Plane

Algorithm

Annealing

Future Work

■ For
$$i = 1, 2, ..., I$$

- set temperature $T_i = R\left(1 \frac{1}{\sqrt{n}}\right)^i$
- get a sample X_i using H&R with density $e^{-c \cdot x/T}$

Convex Optimization Panagiotis REPOUSKOS

Randomized

Convex Optimization and Random

Convex Optimization

Randomized Cutting Plane

Algorithm

Annealing Algorithm

Future Worl

■ For
$$i = 1, 2, ..., I$$

- set temperature $T_i = R\left(1 \frac{1}{\sqrt{n}}\right)^i$
- get a sample X_i using H&R with density $e^{-c \cdot x/T}$

Convex Optimization Panagiotis REPOUSKOS

Randomized

Convex Optimization and Random

Convex Optimization

Randomized Cutting Plane

Algorithm

Annealing Algorithm

Future Work

■ For
$$i = 1, 2, ..., I$$

- set temperature $T_i = R\left(1 \frac{1}{\sqrt{n}}\right)^i$
- get a sample X_i using H&R with density $e^{-c \cdot x/T}$

Randomized Convex Optimization Panagiotis REPOUSKOS

Convex Optimization and Random

Convex Optimization

Randomized Cutting Plane

Algorithm

Annealing

Future Worl

■ For
$$i = 1, 2, ..., I$$

- set temperature $T_i = R\left(1 \frac{1}{\sqrt{n}}\right)^i$
- get a sample X_i using H&R with density $e^{-c \cdot x/T}$

Randomized Convex Optimization

Panagiotis REPOUSKOS

Optimization and Random Walks

Convex Optimizati Random Walks

Randomized Cutting Plane

Algorithm

Annealing Algorithm

Future Worl

- For i = 1, 2, ..., I
 - set temperature $T_i = R\left(1 \frac{1}{\sqrt{n}}\right)^i$
 - get a sample X_i using H&R with density $e^{-c \cdot x/T}$

Randomized Convex Optimization

Panagiotis REPOUSKOS

Optimization and Random Walks

Convex Optimizati Random Walks

Randomized Cutting Plane

Algorithm

Annealing Algorithm

Future Work

References

■ For
$$i = 1, 2, ..., I$$

- set temperature $T_i = R\left(1 \frac{1}{\sqrt{n}}\right)^i$
- get a sample X_i using H&R with density $e^{-c \cdot x/T}$

■ Return X_I

Randomized Convex Optimization Panagiotis

REPOUSKOS

Convex Optimizatio and Randon

Convex Optimiza

Randomized Cutting Plane

Algorithm

Simulated Annealing Algorithm

Future Worl

References

Theorem [Kalai and Vempala]

With probability $1 - \delta$, $I = O(\sqrt{n} \log (Rn/\epsilon \delta))$ get a X_I s.t.

$$c \cdot X_I \leq \min_{x \in K} c \cdot x + \epsilon$$

Randomized Convex Optimization

Panagiotis REPOUSKOS

Convex Optimization and Random Walks

Convex Optimization Random Walks

Randomized Cutting Plane

Algorithm

Experiments

Annealing Annealing

Algorithm

Future Work

References

Section 4

Future Work

17/19

Randomized Convex Optimization Panagiotis REPOUSKOS

Convex Optimization and Random

Convex Optimization

Randomized Cutting Plane

Algorithm

Experiment

Annealing Algorithm

Future Work

17/19

Randomized Convex Optimization

Panagiotis REPOUSKOS

Optimization and Random Walks

Convex Optimization Random Walks

Randomized Cutting Plane

Algorithm

Simulated Annealing

Future Work

17/19

Randomized Convex Optimization

Panagiotis REPOUSKOS

Optimization and Random Walks

Random Walks

Randomized Cutting Plane

Algorithm

Simulated Annealing

Future Work

Randomized Convex Optimization

Panagiotis REPOUSKOS

Optimization and Random Walks

Random Walks

Randomized Cutting Plane

Algorithm

Simulated Annealing

Algorithm

Future Work

References

■ Billiard Walk for spectrahedra - need to efficiently compute reflections

Randomized Convex Optimization

Panagiotis REPOUSKOS

Optimizatio and Randon Walks

Random Walks

Randomized Cutting Plane

Experiments

Annealing

Future Work

- Billiard Walk for spectrahedra need to efficiently compute reflections
- Efficient boundary oracle for CDH&R in spectrahedra

Randomized Convex Optimization

Panagiotis REPOUSKOS

Convex Optimizatio and Randon Walks

Random Walks

Randomized Cutting Plane

Algorithm

Simulate

Annealing Algorithm

Future Work

- Billiard Walk for spectrahedra need to efficiently compute reflections
- Efficient boundary oracle for CDH&R in spectrahedra
- Study behavior of simulated annealing

Randomized Convex Optimization

Panagiotis REPOUSKOS

Optimizatio and Randon Walks

Random Walks

Randomized Cutting Plane

Algorithm

Simulated Annealing

Future Work

- Billiard Walk for spectrahedra need to efficiently compute reflections
- Efficient boundary oracle for CDH&R in spectrahedra
- Study behavior of simulated annealing
- Try new random walks, including Hamiltonian Monte Carlo

Acknowledgments

18/19

Convex Optimization Panagiotis REPOUSKOS

Randomized

nvex timizatio d Randor alks

Convex Optimizat Random Walks

Randomized Cutting Plane

Algorithm Experiments

Annealin

Future Work

References

R project for statistical computing

Google Summer of Code 2019

Project: Sampling Methods for Convex Optimization

Mentors: Vissarion Fisikopoulos

Elias Tsigaridas

Zafeirakis Zafeirakopoulos

¹https://github.com/GeomScale/volume_approximation

References

19/19

Randomized Convex Optimization

Panagiotis REPOUSKOS

Convex Optimization and Random Walks

Random Walks

Randomized Cutting Plane

Experimer

Annealin

Future Work

- F. Dabbene, P. S. Shcherbakov, and B. T. Polyak. A Randomized Cutting Plane Method with Probabilistic Geometric Convergence. SIAM Journal on Optimization, 20:3185–3207, Jan. 2010. ISSN 1052-6234, 1095-7189. doi: 10.1137/080742506. URL http://epubs.siam.org/doi/10.1137/080742506.
- A. T. Kalai and S. Vempala. Simulated Annealing for Convex Optimization. Mathematics of Operations Research, 31(2):253–266, May 2006. ISSN 0364-765X, 1526-5471. doi: 10.1287/moor.1060.0194. URL http://pubsonline.informs.org/doi/abs/10.1287/moor.1060.0194.